AMINOACYL-tRNA-DEPENDENT INTERACTION OF A TRANSFER ENZYME FROM YEAST WITH A COMPLEX FORMED BY TWO OTHER TRANSFER FACTORS WITH GUANOSINE TRIPHOSPHATE

D.RICHTER and F.KLINK

Institute of Physiological Chemistry, University of Kiel, Kiel, Germany

Received 17 September 1968

1. Introduction

From yeast cell supernatant three amino acid transfer-active protein fractions (1-P; 2-P; 3-P) were isolated, two of which (1-P and 2-P) were complementary in ribosomal peptide synthesis [1]. The two complementary fractions were purified and tested for functional behaviour [2]: 1-P was able to bind 3 H-GTP; further purification led to a decrease of this activity. From 2-P a factor T_2 was obtained which caused ribosome-dependent GTP hydrolysis only in combination with 1-P. The purified factors no longer complemented each other in peptide synthesis [2].

In the present paper we want to show that — similar to the results from $E.\ coli\ [3-5]$ and $Bac.\ stearother-mophilos\ [6]$ — the GTP-binding yeast fraction can be separated into two factors (T_1 and T_3) which are both necessary for the binding function. Addition of T_2 and phenylalanyl-tRNA causes the removal not only of the γ -phosphate but also of the nucleotide moiety from the GTP-binding enzymes. The binding of PhetRNA to ribosomes from liver depends on T_1 , T_3 and GTP. Supplementation with T_2 increases the PhetRNA binding but does not result in peptide synthesis.

2. Methods and materials

For materials, for isolation and further purification of 1-P and 2-P and for preparation of poly U-dependent ribosomes from liver see ref. [2]. For assay methods for GTPase activity and amino acid polymerization see ref. [2] except that all incubation mixtures additionally contained 0.06 M NH₄(CH₃COO). For

assay methods for GTP-enzyme complex formation see table 1, for ¹⁴C-tRNA binding to ribosomes see table 2.

3. Results and discussion

Separation of the GTP-binding fraction 1-P into two complementary factors was achieved with gel filtration on Sephadex G-200 (fig. 1). In the two peaks only little activity was detected, but a combination of the two peak fractions proved highly active. We called the lighter fraction T_1 , the heavier one T_3 . The amount of the complex formed with GTP increased with the concentration of either factor (fig. 2). In contrast to Ravel et al. [4] we have not been able to demonstrate a dependence on Phe-tRNA (see table 1), and the amounts of the complex recovered from Sephadex G-50 were twice as high in relation to µg enzyme, as those retained by millipore filters. It remains to be investigated how far aminoacyl-tRNA still contained in the enzyme, or the relatively crude Phe-tRNA preparations used in this test, are responsible for this.

As shown in a preceding paper, one of the GTP-binding factors (T_1) , when combined with T_2 , had a Phe-tRNA-dependent GTPase effect which was enhanced by the addition of ribosomes and poly U [2]. Binding tests with ³H-GTP suggested that the fraction T_2 which was complementary to T_1 in GTP hydrolysis, contained certain amounts of T_3 . Some T_2 preparations which may have been less contaminated by T_3 , only split GTP in the presence of T_1 and T_3 . Hence one function of T_2 is to remove the

Table 1
Influence of T₂ on the ³H-GTP-binding reaction.

	³ H-GTP-binding in μμmoles tested with		$(\gamma^{-3}$ ² P) GTP hydrolysis
	Sephadex G-50	Millipore filter	in μμmoles
$T_1 + T_3$	103	74	35.8
+ 12C-Phe-tRNA	105	70	53.9
+ T ₂	95	88	230.0
$+ 12$ C-Phe-tRNA $+ T_2$	29	28	690.0

Millipore filter and GTPase tests: 0.5 ml of buffer 1 (0.05 M Tris-HCl, pH 7.6; 0.1 M KCl; 0.06 M NH4(CH3COO); 0.012 M Mg(CH3COO); 0.001 M dithiothreitol) contained 120 μ g of T₁; 50 μ g of T₃, 2.5 m μ moles of ³H-GTP, 2.5 m μ moles of (γ -³P) GTP, and, as indicated, 80 μ g of ¹²C-Phe-tRNA and 70 μ g of T₂. After 10 min at 30°, 1.5 ml cold buffer 1 was added; 0.5 ml of the dilution was tested for hydrolysis, 1.5 ml for binding. The values were calculated for the total of 0.5 ml. Gel filtration tests: reaction conditions as above. The chilled solutions were filtered through columns (1 \times 13 cm). The GTP-binding values represent the peak fractions of the excluded material.

Table 2
Transfer of ¹⁴C-phenylalanyl-tRNA to liver ribosomes.

	Binding of ¹⁴ C-phenylalanyl- tRNA to ribosomes (cpm)		Polyphenylalanine synthesis * in the presence of ribosomes (cpm)	
•	+ Poly **	– Poly U	+ Poly U	– Poly U
Complete ***	173	34	35	15
$-T_1, T_3, GTP$	83	25	15	0
- Ribosomes	9	10	10	0
- GTP	76	38	3	0
- T ₁	81	15	2	0
- T ₃	95	35	5	0
$-T_{1}, T_{3}$	75	35	9	0
Complete + T ₂ [†]	291	30	40	0
Complete †	198	_	38	_

^{*} In this system a crude enzyme mixture incorporated 600 cpm into polyphenylalanine.

^{** 100} ug

^{***} Complete mixture contained in 0.5 ml of buffer 1:200 µl of ribosome solution (2.3 Å units (260 mµ, 1%, 1 cm)); 80 µg of 14C-Phe-tRNA = 4500 cpm; 20 mµmoles of GTP; 80 µg of T₁ and 50 µg of T₃. After 15 min at 30°, 3 ml of cold buffer 1 were added; the ribosome-bound Phe-tRNA was determined according to Nirenberg and Leder [7].

[†] The complete mixture was incubated as above, chilled and again incubated for 10 min at 30° in the presence or absence of 70 μ g of T₂.

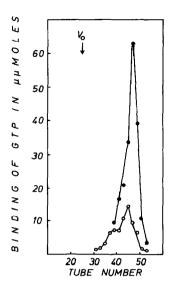


Fig. 1. Gel filtration of 1-P (1 ml = 2.1 mg protein) on Sephadex G-200. Column size: 2.5 \times 45 cm. Elution ascendent at the rate of 5 ml/hr. Binding tests with filter technique, (see table 1, except incubation for 2 min at 2°). ³H-GTP binding by: \circ —— \circ , 200 μ l of the fractions alone; \bullet —— \bullet , 200 μ l of the fractions in the presence of the combined fractions 36–38.

 γ -phosphate from the GTP-enzyme complex. For this, Phe-tRNA is required.

Table 1 shows another function of T_2 : The 3H -GTP binding effects obtained by millipore or gel filtration techniques were three times lower when T_2 and Phe-tRNA were both present. Apart from releasing the γ -phosphate, T_2 obviously also causes a separation of the nucleotide moiety from the nucleotide-enzyme complex. Both effects were observed in the absence of ribosomes and required higher temperatures (30°) than the complex formation which rapidly occurred at 2° .

A participation of the T factors in ribosomal processes is shown in table 2. The enzymatic binding of PhetRNA to poly U-linked ribosomes depends upon T_1, T_3 and GTP. No formation of TCA-insoluble peptides happened. The combination $(T_1 + T_3)$ thus corresponds to the T factors from bacteria [4-6], to "Transferase I" from liver [8], to "factor TF 1" from reticulocytes [9] and to "fraction A" from yeast [10]. Having performed Phe-tRNA binding with T_1, T_3 and GTP we were able additionally to attach about an equal amount of Phe-tRNA to the ribosomes by supplying T_2

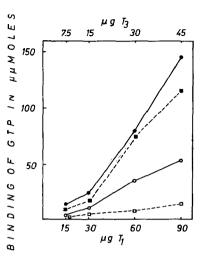


Fig. 2. 3 H-GTP binding by T_{1} and T_{3} . T_{1} and T_{3} were isolated as shown in fig. 1. Incubation 10 min at 2°. Binding assay with filter technique (see table 1). Binding of 3 H-GTP by: T_{1} , T_{2} , T_{3} , $T_{$

(table 2). Polymerization tests proved clearly that even now no polyphenylalanine synthesis had taken place. The catalysis of a tRNA translocation on the ribosome with release of energy required and simultaneous removal of the nucleotide moiety and of the γ -phosphate from the aminoacyl-tRNA-enzyme-ribosome complex could be discussed as a specific role of T_2 . Possibly yeast T_2 corresponds to a part of the factor G from $E.\ coli$; in that case the yeast enzyme must have lost a partial function closely connected with peptide synthesis itself. Experiments in progress will show whether more evidence can be found for the translocation function of T_2 , and whether the system can be completed for polyphenylalanine synthesis by addition of a fourth transfer factor.

Acknowledgements

The authors are grateful to Miss Inga Koops for excellent assistance. This research was supported in part by the Deutsche Forschungsgemeinschaft (Grant Kl 151/9).

References

- [1] D.Richter and F.Klink, Biochemistry 6 (1967) 3569.
- [2] D.Richter, H.Hameister, K.-G.Petersen and F.Klink, Biochemistry (in press).
- [3] J.M.Ravel, R.L.Shorey and W.Shive, Biochem. Biophys. Res. Commun. 29 (1967) 68.
- [4] J.M.Ravel, R.L.Shorey, S.Froehner and W.Shive, Arch. Biochem. Biophys. 125 (1968) 514.
- [5] R.Ertel, N.Brot, B.Redfield, J.E.Allende and H.Weissbach, Proc. Natl. Acad. Sci. U.S. 59 (1968) 861.

- [6] A.Skoultchi, J.Ono, H.M.Moon and P.Lengyel, Proc. Natl. Acad. Sci. U.S. 60 (1968) 675.
- [7] M.Nirenberg and P.Leder, Science 145 (1964) 1399.
- [8] F.Ibuki and K.Moldave, J. Biol. Chem. 243 (1968) 44.
- [9] R.Arlinghaus, J.Shaeffer and R.Schweet, Proc. Natl. Acad. Sci. U.S. 51 (1964) 1291.
- [10] C.F. Heredia and M.S.Ayuso, Abstr. 5th FEBS-Meeting, Prague, 1968, Nr. 807, p. 202.